Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5α -Pregna-1,20-dien-3-one

Guang-ying Chen,^a* Mei-Yan Wei,^b Ni Tan,^c Zhen Liu^d and Rui-Yun Yang^e

^aHainan Provincial Key Laboratory of Tropical Pharmaceutical Herb Chemistry, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan 571158, People's Republic of China, ^bSchool of Pharmacy, Guangdong Medical College, Dongguan, Guangdong 523808, People's Republic of China, ^cSchool of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, People's Republic of China, ^dCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China, and ^eKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China

Correspondence e-mail: chgying123@163.com

Received 21 December 2009; accepted 7 January 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.051; wR factor = 0.114; data-to-parameter ratio = 9.9.

The title compound, $C_{21}H_{30}O$, was isolated from the soft coral Sinularia sp. The molecule contains four alicyclic rings, all trans-fused, among which three six-membered rings are in different distorted chair conformations while a five-membered ring assumes an envelope form.

Related literature

For general background to marine pregnanes isolated from marine organisms, see: Higgs & Faulkner (1977); Blackman et al. (1985); Hooper & Davies-Coleman (1995); Kittakoop et al. (1999); Li et al. (2009); Yan et al. (2004, 2007); Zhang et al. (2005); Seo et al. (1995).

Experimental

Crystal data C21H30O

 $M_r = 298.45$

Orthorhombic, $P2_12_12_1$ a = 7.2619 (13) Å b = 10.998 (2) Å c = 21.964 (4) Å V = 1754.2 (6) Å³

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.984, T_{\rm max} = 0.987$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	201 parameters
$wR(F^2) = 0.114$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
1995 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20862005), the Program for New Century Excellent Talents in Universities (grant No. NCET-08-0656), the Youthful Fund of Guangdong Medical College (grant No. XQ0511) and the Open Research Fund Program of the Key Laboratory of Marine Drugs (Ocean University of China), the Ministry of Education [grant No. KLMD (OUC) 200801].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2251).

References

- Blackman, A. J., Heaton, A., Skelton, B. W. & White, A. H. (1985). Aust. J. Chem. A, 38, 565-573.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2004). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA
- Higgs, M. D. & Faulkner, D. J. (1977). Steroids, 30, 379-388.
- Hooper, G. J. & Davies-Coleman, M. T. (1995). Tetrahedron, 51, 9973-9984.
- Kittakoop, P., Suttisri, R., Chaichantipyuth, C., Vethchagarun, S. & Suwanborirux, K. (1999). J. Nat. Prod. 62, 318-320.
- Li, L., Wang, C. Y., Shao, C. L., Guo, Y. W., Li, G. Q., Sun, X. P., Han, L., Huang, H. & Guan, H. S. (2009). Helv. Chim. Acta, 92, 1495-1502.
- Seo, Y., Jung, J. H., Rho, J. R., Shin, J. & Song, J. I. (1995). Tetrahedron, 51, 2497-2506
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yan, X. H., Guo, Y. W., Zhu, X. Z., Mollo, E. & Cimino, G. (2004). Youji Huaxue, 24, 1233-1238.
- Yan, X. H., Jia, R., Shen, X. & Guo, Y. W. (2007). Nat. Prod. Res. Part A Struct. Synth. 21, 897-902.
- Zhang, C. X., Lu, W. G., Yan, S. J., Su, J. Y. & Zeng, L. M. (2005). Zhongshan Daxue Xuebao Ziran Kexueban, 44, 134-136.

Z = 4

Mo $K\alpha$ radiation

 $0.25 \times 0.22 \times 0.20$ mm

7653 measured reflections 1995 independent reflections 1563 reflections with $I > 2\sigma(I)$

 $\mu = 0.07 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.053$

supplementary materials

Acta Cryst. (2010). E66, o351 [doi:10.1107/S1600536810000863]

50-Pregna-1,20-dien-3-one

G. Chen, M.-Y. Wei, N. Tan, Z. Liu and R.-Y. Yang

Comment

Soft corals have been well recognized as marine organisms containing large quantities of secondary metabolites that exhibit various biological activities. In this regard, 5α -pregna-1,20-dien-3-one was firstly isolated as a marine natural product from an unknown coral (Higgs *et al.*, 1977), subsequently from a soft coral of the genus *Capnella* (Blackman *et al.*, 1985; Hooper *et al.*, 1995), *Scleronephthya pallida* (Kittakoop *et al.*, 1999), *Scleronephthya sp.* (Yan *et al.*, 2004), *Spongodes sp.* (Yan *et al.*, 2004; Yan *et al.*, 2007), all of those belong to the family Nephtheidae. Furthermore, the title compound was also reported to be isolated from the family Alcyoniidae from two soft corals *Sinularia papillosa* (Zhang *et al.*, 2005) and *Alcyonium gracillimun*(Seo *et al.*, 1995). In course of our investigations of bioactive substances from marine organisms (Li *et al.*, 2009), a soft coral *Sinularia sp*. which was collected from Sanya, was studied. In this paper, we describe the isolation, structure elucidation and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The four fused rings are in different distorted conformations. Due to the C1=C2 double bond, ring A is highly distorted with a half-chair conformation. Rings B and C have slightly flattened chair conformations. Ring D assumes an unusual envelope conformation, probably induced by the vinyl substituent. Sstablization of the crystal structure is due only to weak van der Waals interactions.

Experimental

The soft coral *Sinularia sp.* was collected by SCUBA diving off coral reef at a depth of 15–20 m at Sanya in Hainan Island, PR China, in June 2005. The sample was frozen immediately after collection. The species was identified by Professor Renlin Zou (South China Sea Institute of Oceanology, Chinese Academy of Sciences). The soft coral (800 g, wet weight) was homogenized and extracted with MeOH for three times at room temperature, and the MeOH extracts were combined and then concentrated under vacuo to give a dark brown residue (25.6 g). The residue was partitioned between H₂O and EtOAc. The ethyl acetate fraction was subjected to column chromatography over silica gel and Sephadex LH-20 to give the pure title compound (54.9 mg). The crystalline compound was obtained through the slow evaporation of the ethyl acetate solution of the title compound.

Refinement

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 Å (CH), 0.97 Å (CH₂) 0.96 Å (methyl CH₃), and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl)$.

Figures

Fig. 1. View of the title molecular structure with atom numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms.

5α-Pregna-1,20-dien-3-one

Crystal data

C21H30O $M_r = 298.45$ Orthorhombic, P212121 Hall symbol: P 2ac 2ab *a* = 7.2619 (13) Å *b* = 10.998 (2) Å c = 21.964 (4) ÅV = 1754.2 (6) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer	1995 independent
Radiation source: fine-focus sealed tube	1563 reflections w
graphite	$R_{\rm int} = 0.053$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^{\circ}, \theta_{\text{min}}$
ϕ and ω scans	$h = -8 \rightarrow 6$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$k = -13 \rightarrow 13$
$T_{\min} = 0.984, T_{\max} = 0.987$	$l = -27 \rightarrow 25$
7653 measured reflections	

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0531P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{max} = 0.13 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.18 \text{ e} \text{ Å}^{-3}$

 $D_{\rm x} = 1.130 {\rm Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 7653 reflections $\theta=2.1{-}26.0^\circ$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.25\times0.22\times0.20~mm$

F(000) = 656

1995 independent reflections
1563 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.053$
$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
$h = -8 \rightarrow 6$
$k = -13 \rightarrow 13$
$l = -27 \rightarrow 25$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.4468 (4)	0.1678 (3)	0.18505 (11)	0.0607 (8)
H1	0.5613	0.1344	0.1760	0.073*
C2	0.4398 (5)	0.2554 (3)	0.22674 (13)	0.0709 (10)
H2	0.5495	0.2815	0.2442	0.085*
C3	0.2683 (5)	0.3124 (3)	0.24637 (12)	0.0684 (9)
C4	0.0964 (4)	0.2700 (3)	0.21577 (12)	0.0602 (8)
H4A	0.0108	0.3375	0.2127	0.072*
H4B	0.0391	0.2075	0.2405	0.072*
C5	0.1328 (4)	0.2193 (2)	0.15234 (11)	0.0470 (7)
Н5	0.1822	0.2870	0.1284	0.056*
C6	-0.0413 (4)	0.1780 (3)	0.11961 (11)	0.0507 (7)
H6A	-0.1328	0.2422	0.1210	0.061*
H6B	-0.0918	0.1071	0.1399	0.061*
C7	0.0026 (4)	0.1469 (2)	0.05360 (11)	0.0500 (7)
H7A	-0.1075	0.1149	0.0344	0.060*
H7B	0.0363	0.2210	0.0324	0.060*
C8	0.1565 (3)	0.0555 (2)	0.04637 (11)	0.0417 (6)
H8	0.1119	-0.0234	0.0610	0.050*
С9	0.3289 (3)	0.0902 (2)	0.08406 (11)	0.0414 (6)
H9	0.3736	0.1667	0.0666	0.050*
C10	0.2826 (4)	0.1193 (2)	0.15166 (11)	0.0446 (6)
C11	0.4847 (4)	-0.0019 (2)	0.07458 (11)	0.0500 (7)
H11A	0.4480	-0.0796	0.0916	0.060*
H11B	0.5932	0.0255	0.0964	0.060*
C12	0.5332 (4)	-0.0188 (2)	0.00707 (11)	0.0477 (7)
H12A	0.5836	0.0564	-0.0089	0.057*
H12B	0.6266	-0.0814	0.0032	0.057*
C13	0.3649 (3)	-0.0546 (2)	-0.02996 (11)	0.0430 (6)
C14	0.2141 (3)	0.0410 (2)	-0.01977 (11)	0.0429 (6)
H14	0.2689	0.1190	-0.0315	0.051*
C15	0.0723 (4)	0.0120 (3)	-0.06889 (11)	0.0591 (8)
H15A	0.0036	0.0842	-0.0802	0.071*
H15B	-0.0133	-0.0498	-0.0551	0.071*

supplementary materials

C16	0.1885 (4)	-0.0347 (3)	-0.12272 (13)	0.0706 (9)
H16A	0.1441	-0.1135	-0.1360	0.085*
H16B	0.1811	0.0215	-0.1567	0.085*
C17	0.3882 (4)	-0.0446 (3)	-0.09989 (11)	0.0528 (7)
H17	0.4484	0.0334	-0.1083	0.063*
C18	0.3017 (4)	-0.1838 (2)	-0.01350 (13)	0.0591 (8)
H18A	0.4009	-0.2398	-0.0204	0.089*
H18B	0.1985	-0.2059	-0.0384	0.089*
H18C	0.2664	-0.1863	0.0286	0.089*
C19	0.2221 (5)	0.0030 (3)	0.18588 (12)	0.0617 (9)
H19A	0.3250	-0.0512	0.1895	0.093*
H19B	0.1252	-0.0363	0.1636	0.093*
H19C	0.1785	0.0245	0.2257	0.093*
C20	0.5016 (5)	-0.1414 (3)	-0.12920 (12)	0.0672 (9)
H20	0.4512	-0.2189	-0.1317	0.081*
C21	0.6668 (5)	-0.1253 (4)	-0.15167 (14)	0.0843 (12)
H21A	0.7218	-0.0490	-0.1500	0.101*
H21B	0.7292	-0.1903	-0.1693	0.101*
01	0.2658 (4)	0.3879 (3)	0.28688 (11)	0.1084 (10)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.052 (2)	0.083 (2)	0.0466 (16)	-0.0024 (18)	-0.0062 (13)	-0.0025 (15)
C2	0.061 (2)	0.096 (3)	0.0553 (18)	-0.013 (2)	-0.0124 (15)	-0.0138 (18)
C3	0.079 (2)	0.080 (2)	0.0458 (16)	-0.006 (2)	-0.0011 (16)	-0.0092 (16)
C4	0.064 (2)	0.069 (2)	0.0477 (17)	0.0012 (17)	0.0080 (15)	-0.0002 (14)
C5	0.0485 (17)	0.0497 (16)	0.0428 (14)	-0.0039 (14)	0.0042 (12)	0.0054 (11)
C6	0.0385 (16)	0.0609 (17)	0.0528 (15)	0.0040 (15)	0.0040 (12)	0.0011 (13)
C7	0.0376 (15)	0.0606 (17)	0.0519 (15)	0.0020 (15)	-0.0075 (12)	0.0021 (12)
C8	0.0352 (15)	0.0439 (15)	0.0461 (14)	-0.0050 (13)	-0.0032 (11)	0.0046 (11)
C9	0.0386 (15)	0.0432 (15)	0.0425 (13)	-0.0045 (13)	-0.0013 (11)	0.0055 (11)
C10	0.0430 (16)	0.0523 (15)	0.0386 (13)	-0.0017 (14)	-0.0032 (12)	0.0046 (11)
C11	0.0402 (16)	0.0606 (18)	0.0493 (15)	0.0031 (14)	-0.0084 (12)	-0.0012 (13)
C12	0.0408 (17)	0.0443 (15)	0.0580 (16)	0.0010 (13)	-0.0012 (12)	-0.0028 (12)
C13	0.0400 (16)	0.0423 (15)	0.0468 (15)	-0.0025 (13)	-0.0002 (12)	0.0019 (11)
C14	0.0392 (15)	0.0463 (15)	0.0432 (14)	-0.0017 (13)	-0.0053 (12)	0.0050 (11)
C15	0.0547 (18)	0.074 (2)	0.0490 (17)	0.0044 (17)	-0.0140 (14)	-0.0022 (14)
C16	0.072 (2)	0.092 (2)	0.0473 (16)	0.003 (2)	-0.0123 (16)	-0.0092 (16)
C17	0.0557 (19)	0.0532 (17)	0.0494 (16)	-0.0035 (16)	0.0026 (13)	-0.0025 (13)
C18	0.061 (2)	0.0501 (17)	0.0664 (17)	-0.0050 (16)	-0.0004 (15)	0.0007 (14)
C19	0.071 (2)	0.0659 (19)	0.0482 (16)	0.0009 (18)	0.0012 (14)	0.0170 (13)
C20	0.075 (2)	0.077 (2)	0.0502 (17)	0.000 (2)	0.0013 (16)	-0.0143 (15)
C21	0.071 (3)	0.108 (3)	0.074 (2)	0.013 (2)	0.009 (2)	-0.027 (2)
01	0.114 (2)	0.125 (2)	0.0864 (17)	0.003 (2)	-0.0065 (16)	-0.0523 (16)

Geometric parameters (Å, °)			
C1—C2	1.330 (4)	C11—H11B	0.9700

C1—C10	1.498 (4)	C12—C13	1.520 (3)
C1—H1	0.9300	C12—H12A	0.9700
C2—C3	1.460 (5)	C12—H12B	0.9700
С2—Н2	0.9300	C13—C18	1.536 (4)
C3—O1	1.217 (3)	C13—C14	1.534 (4)
C3—C4	1.493 (4)	C13—C17	1.549 (3)
C4—C5	1.524 (4)	C14—C15	1.525 (3)
C4—H4A	0.9700	C14—H14	0.9800
C4—H4B	0.9700	C15—C16	1.541 (4)
C5—C6	1.523 (4)	C15—H15A	0.9700
C5—C10	1.547 (4)	C15—H15B	0.9700
С5—Н5	0.9800	C16—C17	1.539 (4)
C6—C7	1.523 (4)	C16—H16A	0.9700
С6—Н6А	0.9700	C16—H16B	0.9700
С6—Н6В	0.9700	C17—C20	1.492 (4)
С7—С8	1.512 (3)	С17—Н17	0.9800
С7—Н7А	0.9700	C18—H18A	0.9600
С7—Н7В	0.9700	C18—H18B	0.9600
C8—C14	1.520 (3)	C18—H18C	0.9600
C8—C9	1.549 (3)	C19—H19A	0.9600
С8—Н8	0.9800	C19—H19B	0.9600
C9—C11	1.532 (3)	С19—Н19С	0.9600
C9—C10	1.556 (3)	C20—C21	1.309 (4)
С9—Н9	0.9800	С20—Н20	0.9300
C10—C19	1.547 (4)	C21—H21A	0.9300
C11—C12	1.535 (4)	C21—H21B	0.9300
C11—H11A	0.9700		
C2-C1-C10	124.4 (3)	H11A—C11—H11B	107.9
C2—C1—H1	117.8	C13—C12—C11	111.3 (2)
C10-C1-H1	117.8	C13—C12—H12A	109.4
C1—C2—C3	123.2 (3)	C11—C12—H12A	109.4
С1—С2—Н2	118.4	C13—C12—H12B	109.4
С3—С2—Н2	118.4	C11—C12—H12B	109.4
O1—C3—C2	121.5 (3)	H12A—C12—H12B	108.0
O1—C3—C4	122.0 (3)	C12—C13—C18	110.7 (2)
C2—C3—C4	116.5 (2)	C12—C13—C14	108.6 (2)
C3—C4—C5	112.4 (2)	C18—C13—C14	112.7 (2)
C3—C4—H4A	109.1	C12-C13-C17	115.1 (2)
С5—С4—Н4А	109.1	C18—C13—C17	109.4 (2)
C3—C4—H4B	109.1	C14—C13—C17	100.0 (2)
C5—C4—H4B	109.1	C8—C14—C15	120.8 (2)
H4A—C4—H4B	107.9	C8—C14—C13	114.1 (2)
C6—C5—C4	113.4 (2)	C15-C14-C13	103.6 (2)
C6—C5—C10	111.5 (2)	C8—C14—H14	105.7
C4—C5—C10	113.0 (2)	C15—C14—H14	105.7
С6—С5—Н5	106.1	C13—C14—H14	105.7
C4—C5—H5	106.1	C14—C15—C16	104.1 (2)
С10—С5—Н5	106.1	C14—C15—H15A	110.9
C5—C6—C7	110.0 (2)	C16—C15—H15A	110.9

supplementary materials

С5—С6—Н6А	109.7	C14—C15—H15B	110.9
С7—С6—Н6А	109.7	C16—C15—H15B	110.9
С5—С6—Н6В	109.7	H15A—C15—H15B	109.0
С7—С6—Н6В	109.7	C17—C16—C15	106.8 (2)
H6A—C6—H6B	108.2	C17—C16—H16A	110.4
C8—C7—C6	113.8 (2)	C15—C16—H16A	110.4
С8—С7—Н7А	108.8	C17—C16—H16B	110.4
С6—С7—Н7А	108.8	C15—C16—H16B	110.4
С8—С7—Н7В	108.8	H16A—C16—H16B	108.6
С6—С7—Н7В	108.8	C20—C17—C16	115.5 (3)
H7A—C7—H7B	107.7	C20—C17—C13	116.0 (2)
C7—C8—C14	111.9 (2)	C16—C17—C13	103.0 (2)
С7—С8—С9	112.2 (2)	С20—С17—Н17	107.3
C14—C8—C9	108.3 (2)	С16—С17—Н17	107.3
С7—С8—Н8	108.1	С13—С17—Н17	107.3
С14—С8—Н8	108.1	C13—C18—H18A	109.5
С9—С8—Н8	108.1	C13—C18—H18B	109.5
C11—C9—C8	111.2 (2)	H18A—C18—H18B	109.5
C11—C9—C10	115.2 (2)	C13—C18—H18C	109.5
C8—C9—C10	112.7 (2)	H18A—C18—H18C	109.5
С11—С9—Н9	105.6	H18B—C18—H18C	109.5
С8—С9—Н9	105.6	C10-C19-H19A	109.5
С10—С9—Н9	105.6	С10—С19—Н19В	109.5
C1—C10—C19	106.4 (2)	H19A—C19—H19B	109.5
C1—C10—C5	107.6 (2)	С10—С19—Н19С	109.5
C19—C10—C5	112.5 (2)	H19A—C19—H19C	109.5
C1—C10—C9	111.6 (2)	H19B—C19—H19C	109.5
С19—С10—С9	110.8 (2)	C21—C20—C17	124.9 (3)
C5—C10—C9	107.9 (2)	C21—C20—H20	117.5
C9—C11—C12	112.4 (2)	С17—С20—Н20	117.5
C9—C11—H11A	109.1	C20-C21-H21A	120.0
C12—C11—H11A	109.1	C20—C21—H21B	120.0
С9—С11—Н11В	109.1	H21A—C21—H21B	120.0
C12—C11—H11B	109.1		

Fig. 1